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Goals & requirements

Goal

To develop a parallel version of tensor multiplication with
reductions.

Requirements

At a minimum, multiply two rank-4 tensors with two
reductions.

Have potential for multiplying large tensors with
applications in computational chemistry.

Use memory efficiently.

Scale well.
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Basic definition

Tensor: Extension of the idea of a linear operator to
multi-linear algebra setting.

Useful for writing equations with respect to arbitrary
coordinate systems—many applications.

Just as we may write a linear operator as a matrix (in
finite-dimensional space),

A =
(
Ae1 Ae2 · · · Aem

)
,

we may also write tensors as multi-dimensional boxes of
numbers. Number of dimensions of box = rank of tensor, e.g.,

rank-4 tensor: aijkn.
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Notation

Multiplication like an outer product.

cijkmnp = aijkbmnp

Repeated indices ⇒ summation

cijmn = aijkbmnk ⇔ cijmn =
∑
k

aijkbmnk .

Also known as tensor contraction, or reduction.
In general, if we are multiplying c∗∗...∗ = a∗∗...∗b∗∗...∗,

(Rank c) = (Rank a) + (Rank b) - (2 × reductions).
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Notation examples

Consider 3-D column vectors u, v, and matrices A, B.

Inner product: s = uivi =
∑3

i=1 uivi = uTv

Outer product: wij = uivj

wij = uivj =

u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

 = uvT

Matrix-vector multiplication: vi = ai juj

vi = aijuj =
3∑

j=1

aijvj =

a11v1 + a12v2 + a13v3

a21v1 + a22v2 + a23v3

a31v1 + a32v2 + a33v3

 = Au
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Notation examples (continued)

Matrix-matrix multiplication: cik = ai jbjk

cik = aijbjk =
3∑

j=1

aijbjk = AB =



(
a11b11 + a12b21

+ a13b31

) (
a11b12 + a12b22

+ a13b32

) (
a11b13 + a12b23

+ a13b33

)
(

a21b11 + a22b21

+ a23b31

) (
a21b12 + a22b22

+ a23b32

) (
a21b13 + a22b23

+ a23b33

)
(

a31b11 + a32b21

+ a33b31

) (
a31b12 + a32b22

+ a33b32

) (
a31b13 + a32b23

+ a33b33

)


Exercise: Construct ABT , uTAv, etc.
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Application of interest

Concentrate on aijkt = bijef cktef .

Actually, code works for
wa1a2...amb1b2...bn = ua1a2...amc1c2...cpvb1b2...bnc1c2...cp .

Assume a k-index transformation:

vi1i2...ik =
M∑

j1j2...jk=1

zi1j1zi2j2 · · · zik jk

Call z the characteristic matrix.

Trade-off between storage and computation time.
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Two ways to construct serial algorithm

Our strategy: element-by-element multiplication.

- Easier to read and analyze.
- Easier to extend to arbitrary-rank, arbitrary-reduction.

Another strategy: Unwrap the tensors.

⇔

- Tensor operations become block-matrix multiplications.
- Can use BLAS to compute.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Implementation in C++
bryTensor class description

Data

Tensor Double-precision, not allocated until needed.

Char. matrix Double-precision, not allocated until needed.

Statistics Dimensions, ranks, tags, etc.

Mods Cumulative products used for indexing.

Operations

Load/resize Load tensor or characteristic matrix from file, double
* variable, etc. Resize necessary for parallel version.

Formation Form piece of tensor from characteristic matrix.

Product Overwrites current tensor with product of two others.
Arguments: pointers to tensors, # reductions.
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Parallelization

Multiplying wa1a2...amb1b2...bn = ua1a2...amc1c2...cpvb1b2...bnc1c2...cp .

Assumption

Each processor can hold one row of u, v and w .

A row: u(i,:,:,...,:).

In index notation for rank-3 tensor: u2jk .

If u and v have 128 rows each, then each processor must
be able hold 1/1283 ≈ 1/(2.1 · 106) of problem.

Divide rows of u among processors, then divide rows of v
among processors assigned to each row of u.

Notation: Nu, Nv are rows of u, v , respectively; P is number of
processors.
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P < Nu

Each processor gets all of v .

Each processor gets one or more rows of u.

- If Nu = 10, and P = 4, then 2 processors would get 2 rows
and 2 processors would get 3 rows.

Start row of u assigned to processor n:

n bNu/Pc+ min {n, (Nu mod P)}

Number of rows of u assigned to processor n:

bNu/Pc+

{
1 n < (Nu mod P)
0 otherwise
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P >= Nu

Each processor is assigned to one row of u.

Each processor gets one or more rows of v .

- If Nu = 4, and P = 10, then 6 processors would get ≈ 1/3
of v , and 4 processors would get ≈ 1/2 of v .

Processor n is assigned to following row of u:

row =


n/(d + 1) n < m(d + 1)

m +
n −m(d + 1)

d
n ≥ m(d + 1)

where m = (P mod Nu), and d = bP/Nuc.
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P >= Nu (continued)

What piece of v does processor n get? Define

Q: Number of processors on current row:

Q =

{
d + 1 n < m(d + 1)
d n ≥ m(d + 1)

q: Rank of processor n in that list of processors

q =

{
n mod (d + 1) n < m(d + 1)
[n −m(d + 1)] mod d n ≥ m(d + 1)

Then the first row of v that processor n operates on is

q bNv/Qc+ min {q, (Nv mod Q)}

The number of rows of v that processor n operates on is

bNv/Qc+

{
1 q < (Nv mod Q)
0 otherwise
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Distribution, Nu = 6, Nv = 5, P = 4
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Distribution, Nu = 6, Nv = 5, P = 14
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Implementation issues

Consider two examples:

P = 1000, Nu = 1000

Each processor is assigned to 1 row of u

Each processor operates on all of v .

P = 1999, Nu = 1000

Each processor is assigned to 1 row of u.

Each of 1998 processors operates on ≈ 1/2 of v .

One processor operates on all of v .

We have basically doubled the number of processors, but
computation time is the same! Moral of the story:

If P ≥ Nu, increase P by multiples of Nu.

If P < Nu, increase P by integer divisions of Nu.



A Parallel Im-
plementation

of Tensor
Multiplication

Bryan
Rasmussen

Introduction

Strategy

Serial

Parallel

Results

Comments
and future
work

Timing, u = y × 32× 32× 32, v = y × 32× 32× 32

Exponents ≈ 1.99
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Timing, u = y × 16× 16× 16, v = y × 16× 16× 16

Exponents ≈ 1.99 and 1.11
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Timing, u = y × 16× 16× 16, v = y × 16× 16× 16
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Timing, u = y × 32× 32× 32, v = y × 32× 32× 32
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Comments

Current algorithm

Pretty good memory savings.

Pretty good general algorithm.

Lots of useful serial and MPI functions.

Application will dominate storage/communication.

- What do we do with this beast?

Divergent behavior between memory-efficient mode and
non-memory efficient mode when P > Nu.

All in all, scales very well.
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Comments (continued)

Future work

Look at symmetry in k-index transformation:

vi1i2...ik =
M∑

j1j2...jk=1

zi1j1zi2j2 · · · zik jk

Unwrap tensors and use the BLAS?

Consider more optimal splitting strategy.

Augment MPI calls with threads for better serial
performance.

Extend to different orders of indices.
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